If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22x^2+6x-4=0
a = 22; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·22·(-4)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{97}}{2*22}=\frac{-6-2\sqrt{97}}{44} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{97}}{2*22}=\frac{-6+2\sqrt{97}}{44} $
| 22x^2+6x+1000=0 | | 30x^2+19x=63 | | 12x-3(3x-1)=2x+14 | | 8x=-16x+5 | | 11=x2+2 | | -0.10(21)+0.90x=0.05(x-8) | | 8x2=-16x+5 | | 2x-3.2=28.8 | | 7x+111=180 | | -2/8y=4/12 | | 2(3x+9)=-11+17 | | 6a-4=2a | | 8u2=+26u+2 | | x*1.06=100 | | 2/3(6x+30)=x+5)x+4)-2x | | 2^2+3(5+x)+3=31 | | 3-(2x+7)=3x-10 | | 8u=+26u+2 | | 2y+9=36 | | x^5+3x^4-5x^3-15x^2+4x+12=0 | | 2/5x−4=16 | | 4(2p-3)+3p=27 | | 198=3x2 | | 8x+4=10+2x+7 | | 1+9x=5+7x | | 1+2(2-x)=3(x-5) | | -6x+3+4x=3-2x | | 8x-5x+3=x+4+x | | 7(x-3)+4=60 | | 1-4x=2-x | | 3(4x+7)=-6+15 | | â=3x+8° |